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STABILITY OF A HORIZONTAL ROTOR IN FLEXIBLE ROLLING BEARINGS WITH CLEARANCES* 

A.S. KEL'ZON and A.A. KOVAL 

The stability of motion of a horizontal rotor in flexible rolling 
bearings with radial clearances, treated as a system with distributed 
mass, is analysed. An algorithm is derived for calculating the 
equations of the boundary curves of the stable and unstable regions, by 
determining the zeros of the determinants of certain infinite block 
matrices. The vertices of the parametric resonance zones that may occur 
in this non-linear system are determined in explicit form. It is shown 
that the parametric resonances may be found by determining the natural 
frequencies of the corresponding linear systems with reduced values of 
the stiffnesses of the bearings with clearances. 

The possibility that clearances in the bearings may significantly affect the dynamics of 
a system was first pointed out in /l, 2/. A detailed analysis is available /3/ of the motion 
of a shaft in bearings with clearances. 

Previous studies of rotor stability /l-3/ have considered the rotor as a point mass 
revolving in a flexible bearing with clearance. This scheme, however, is highly idealized 
and does not make allowance for many features of real rotors as elastic systems with 
distributed mass, The problem is of particular importance for high-rpm rotors revolving at 
an angular velocity above the first or second critical velocity of the system. 

1. The problem of the forced oscillations of a rotor as a system with distributed mass 
can be solved using the method of initial parameters /4/. To do this, the real rotor is 
divided into a series of stepped segments of constant linear mass and flexural rigidity, in 
such a way that different machine parts mounted on the shift (discs, concentrated masses, 
unbalances, and bearingslare situated at the ends of the appropriate segments (Fig.1). 

Fig.1 

We introduce a right-handed coordinate system OXYZ attached to the stationary rotor: 0 
is the centre of the left cross-section of the rotor, the Z-axis points along the rotor 
axis, the X-axis is vertically upward and the Y-axis is horizontal (Fig.1). Also shown in 
the figure is a ctoss-section of the rotor in the plane of the bearing: 0, is the centre af 
the rotor journal, z,p are the projections of the journal displacement on the X,Y axes, it 
is the angle of precession, and n,., av are the projections of the deformation vector on the 
X, Y axes. The dotted line indicates the surface of the bearing. 

The equations of the variations for the k-th homogeneous segment of the rotor are /4/ 

EJk&, + p"u:t + pkg= 0 (1.1) 

where EJk is the flexural stiffness of the segment, pk is its mass per unit length, ~"(2, t), 
and vk (z, t) are the projections of the rotor displacement on the X and Y axes, respectively 
(the indices s and t-indicate differentiation with respect to the coordinate z and the time 
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t) . 
The matching equations, relating the vibration parameters at the end of the k-th and the 

beginning of the (k -f- 1)-th segments of the rotor, in the case of uninterrupted vibrations 
(the first and third types of motion), are as follows /5/ (omitting the argument t in the 

functions u and V): 

Uk (1”) = uli+* (0), U,k (P) = u:+, (0) 

EJ”u&‘(l”) = EJk+’ 
(4.2) 

ugl (0) + B%:$l (0) + ALou:;’ (0) 

EJ:;, (1”) = EJL+‘&’ (0) + CLaxL -i_ m’&+’ (0) + &9+1(O) - mkg - 
mkekdcos (wt _t vk) 

(the matching equations for V are similar). Here 1' is the length of the k-th segment, B’ 
and Ak are the equatorial and polar moments of inertia of a disc mounted at the end of the k- 
th segment, o is the frequency of revolution of the rotor, C" and nk are the stiffness and 
damping of the bearing at the end of the k-th segment, mk is the concentrated mass; ek is 

the eccentricity of the mass me, mkekd 
and yk 

is the centrifugal force due to the eccentricity ek, 
is the angle between the eccentricity and the X .axis at the initial time t =O. 

The equations of motion (l.l), the matching conditions (1.2) and the boundary conditions 
at the rotor ends ( z =0 and z = L), which are, say, for a rotor with free ends, 

z = 0, L, uzz = U:LZ = UIT = v _- = 0 :_. (1.3) 
completely define the solution of the problem of forced flexural vibrations of the rotor. 

Note that in the case of linear bearings with radial clearance S = 0, the deformations 
of the bearing are identical with the displacements of the rotor journal: ax' = uk, ayk = vk. 

The solution of the linear problem will be sought in the form 

u'= RIkcosot + R,"sinot, uk = R,"cosot f Raksinwt (1.4) 

Eqs.(l.l)-(1.3) yield a matrix equation relating the values of the vibration parameters 
at the beginning of two consecutive rotor segments: 

II x (Rlk, R,“, Rsk, Rbk)T = (R;+‘l, R;+l, R;+l, R;+‘)T (1.5) 

R' = (Rik (0) R%(O), R!z, (0) R%,, (0)), i = 1, 2, 3, 4 

(II is a square 16x16 matrix). 
Writing Eqs.tl.5) in sequence for all rotor segments and using the rotor end conditions 

(1.3), we obtain 

AA (0, E I’, Bh’, A”, Ck, mk, xk) (pl, pz, p3, P# = 

BB(w, m”,e’, y’), pi = (Ri(O), I&(O), &(L), &(L)) 
(1.6) 

(AA is an 8x8 matrix and BB is an eight-dimensional vector). 

2. The non-linearity of the problem lies in the non-linear reaction forces of bearings 
with clearances. Taking into account that in a rolling bearing the point of contact, the 
centre of the cross-section of the revolving rotor 0, and the centre of the undeformed bearing 
0 (Fig.1) lie in the same straight line, we can express the projections 
deformation vector as follows (omitting the index k for brevity): 

a, and ay of the 

a, = u - 6 cos cp = u (1 - 6/(u2 + v~)~/*) 

a, = v - 6 sin 'p = v(1 - 61 (CL" + 3)'/*) (2.1) 

where 6 is the radial clearance in the bearing (Fig.1). 
We shall consider small pendular vibrations of the shaft in the bearing. In that case 

the constant component of the vibrations of the shaft journal is approximately equal to the 
full static sag of the shaft, with allowance for the clearance, and is much larger than the 
other components of the vibrations: 

u=I,+z=r,+6+s,v=y; Z,>~z3:,lyl 
(2.2) 

0.0 is the static sag of the shaft in the bearing). 
For small pendular vibrations the angle q is small, and so 

sin 'p = y I 10, cos cp - 1 - yV(21,*) (2.3) 

Using conditions (2.2), let us expand (2.1) in powers of the small quantities s/l,, ~11,. 
Substituting the results into formulae (1.2) and dropping terms of higher order than (r/Z&' 

and (Y / Uy, we obtain the conditions for the jump in the transverse force across a section 
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with a bearing: 

F, = -Cx + mxtt + x5t - C6y/(21,7 + C6yWZ,~ (2.4) 

FU = -C (1 - %JY + myit + xyf + C6~yyi1,~ + CGX~Y] 1,~ 

In the first approximation, the solution of the problem of the forced pendular vibrations 

of the shaft may be assumed to have the form (1.41, with the coefficients Rik determined by 

solving the appropriate linear problem for a shaft in bearings without clearance with twice 
the stiffness of the original shaft in the horizontal and vertical planes: 

Then we obtain 

c, = c, c, = CM = c (1 - 6/&J (2.5) 

F, = -C, f mxtt $ xxt - x (b, cos 2cot 4 c, sin 2~t) (2.6Z 
Ft, = -Coly $ my,, f xyf - y (b2 cos ot i- c, sin at) 

+$A, cl= +$A, b,+A, c,=+A, A+- 
0 

3. If the effect of the concentrated torques due to discs and the concentrated forces 
defined by formulae (2.4) is included for some segments of the rotor at z = z.', the equations 
of motion may be written in the form 

(EJ (4 ~z)zr - B ((B’z,,, - A”oy,t) h (z - zk)), + (3.1) 

P (2) Ttt + 22 (f,’ (t) 32 + mkxtt + xkrt) h (z - 2’) = 0 
k 

The equations for the function y (t, z) are similar in form, with 

f="(t)= Ck + blkcos 2wt + c,'sin 20t 

fuk (t) = C” (I- 13~ 1 Z,k) _t b,” cos cot + cak sin ot 

(3.2) 

Summation over k runs from 1 to M, where M is the total number of all discs and bearings 
along the shaft, and h(z) is a delta-function. 

We consider the solution as an expansion in terms of eigenfunctions (summation over i 
runs from 1 to N, integration with respect to z from zero to L): 

2. := F ** (4 qi (th Y = F Yi (2) g&(t) 

Szi(Z)Xj(Z)p(a)da= A, 

S (CJ (z)zi*z(Z))z*Zj(Z)dZ z Pi'Aij - ZCkLZikZjk 
k 

(3.3) 

Here Aij is the Kronecker delta, pi are the natural frequencies of the linear system when 
all S"= 0 (the 

Substituting 
multiplying these 
to L, we obtain 

analogous relations for the functions YI(z) are not given). 
series (3.3) into Eq.(3.1) and the analogous equations for Y (t, a), and then 
equations by xj (2) and Yj (z)' respectively, and integrating from zero 

pj2qj (t) + gjtt (t) -- F 71 ((@GzqittXj - AkoYizgiGj) h @ - Zk))r dz + 

and similar equations, obtained by making the following substitution in (3.4): 

qj(t)-gj(t), Q++yj, fz'(t)"fy"(t)* Akt,-z4k* 

Since /b/ 

(3.4) 

s (Bkrizzjih (2 - 2)). dz = - s B”X~,Xj& (2 - zk) dz 
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and similar relations hold for the other terms representing the effect of discs in (3.4), it 
follows that the above systems of equations can be written in matrix notation: 

MQtt + P, ‘$19 - AGt 4 SQt = 0 (3.5) 
-@fGtt -i-P, (t)G + AQ, 4 SG, = 0 

Q = Q tt) = (4, e . ., PN)=, G = G (t) = (gl, . . ., gN)T 

where M, P,., P,, A, S are symmetric N X N matrices. 
Equating 

where obvious D is antisymmetric, and L and P(t) are 
Defining a 4N-dimensional vector Z = (R, LR,)T, 

form (where I is the 2N x 2N identity matrix): 

Eq.(3.7) is, by definition, canonical /7/, and therefore we can apply a 

the damping in,the bearings to zero (i.e., s = O), we obtain from (3.5) 

L x R,, +-D x R, + P (t) x R =0 (3.6) 

I P,(t) 0 
“to= 0 II P*(t) ’ 

P(tfT)== P (t), T = 2n/o 

symmetric 2N x 2N matrices. 
we can write Eq.(3.6) 

0 
L-x z I 

in /7/, according to which the vertices of the parametrrc resonance zones on 
diagram, relative to the axes o (the frequency of revolution) and E (any 
system), are the frequencies 

w = (O( + Wj)/?Z, i,j, n = 1, 2, . . . 

in the following 

(3.i) 

theorem proved 
the stability 
parameter of the 

(3.8) 

where oi are the natural frequencies of the corresponding unperturbed system, i.e., the natural 
frequencies of the syshem with b, =c~ =O in formulae (3.2). Therefore fog} = {p~i,p~}, and 
the vertices of the parametric resonance zones are 

U = 2pM*ln, 2piin~ (P&Ii + pj)/% (Pi -b PJ)‘“, (p&Ii -b p,$fj)/n 
(3.9) 

where PM - unlike pi - are the natural pendulum frequencies of the unperturbed (linear- 
ized) system with stiffness defined by formulae (2.5) (for pi we have Cxk = C,' = C'). 

Stability analysis in the case of rotary forced vibrations follows similar lines; the 
resulting vertices of the parametric resonance zones are 

0 I- 2pil72, (pi + pj)/n (3.10) 

4. For the fundamental resonance zones, i.e., i -i in Eqs.(3.9) and (3.101, the regions 
of stability and instability may be determined using Floquet's theory /8/. Since the bound- 
aries of these zones correspond to multiplier values /7/ p =erp (inm) = kf, it follows that 
at the boundary.of the dynamic instability region we have either a T-periodic (p = 1) or a 
T-antiperiodic (p = -1) non-trivial solution of Eq.(3.7), i.e., a solution 

+' = 5 (E~cos((Zn - l)or/2)+ Ft% sin((2n -- 1)wt/2)) 
==I 

and similarly for gK. 
Substituting these expansions into the equations of motion (l.l), the matching conditions 

(1.2) and (2.6) and the boundary conditions (1.3), we apply the solution procedure using the 
method of initial parameters for all harmonics in expansions (4.1) and (4.21. Equating the 
coefficients of different harmonics, we obtain two infinite systems of linear equations with 
constant coefficients. The matrices of these systems are in block form: I xp fw,$ M,, 0 j 0 . . . i hf,, xp M,, M,, 0 . . . 

I 

(4.3) 

$1 2; 21 $ ;;*..I 

'. . . *........a.... 



Xi;f M,, M,, 0 0 . . . 

M,, Xz Mzs M2, 0 . . . 

Ms, Ms, X? M,, Ma: . . . 
0 M4, M,, Xc M,, . . 
. . . . . . 
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(4.4) 

Here X:5,,, and Mij are 8x8 matrices, and 0 is the 8x8 zero matrix. It is clear from (2.6) 
that the matrices Mij are zero matrices if all 6" =O. 

It is obvious from the construction of the matrices (4.3) and (4.4) and from Eq.(1.6) 
that 

x:,(w) =AA~(on/m) 

and moreover the matrix AAM is obtained from the matrix of the corresponding linear 
problem (formula (1.6)) by replacing the compliance of the bearings in which there are pendular 
vibrations in the horizontal direction with the reduced stiffnesses 

c& = c" (1 - 6"ll,k) (4.5) 

Forming the determinants of the matrices (4.3) and (4.4) and equating them to zero, we 
obtain the conditions for the existence of non-trivial solutions (4.1), (4.2), and consequently 
also the equations of the curves bounding the unstable regions. As the number of terms in the 
expansions (4.1), ,(4.2) is increased, so does the order of the determinants of the matrices 
(4.3), (4.4). At the same time, the number of boundary curves determined is also increased 
and their positions in the stability diagram can be determined more accurately. Of course, 
if the damping is zero the determinants of the matrices AAM will not vanish. In that case 
there is a loss of stability only at some fairly high level of the parameter 6 and the non- 
zero matrices Mij. 

Thus, the parametric resonances in this non-linear system may be found explicitly by 
determining the natural frequencies of the corresponding linear systems. 

5. To illustrate the method, let us consider the construction of boundary curves in the 
stability diagrsm in the case of a simple rotor represented by a homogeneous rod supported 
at its ends on a flexible bearing, hinged at z = 0, of stiffness C with clearance 6 (at 
z = L) , revolving at frequency o. 

The boundary conditions for the system are 

z (0) = 0, 212 (0) = 0, xi* (L) = 0. (5.1) 
EJ+m (L) = C (1 - 61 (x2 (L) + yx (L))“z)z (L) (5.2) 

(and analogous conditions for y(z)). 
Consider the region of rotary vibrations. The solution in the first approximation is 

2, = 2, (2) -+ rl (2) cos ot, y, = r, (2) sin ot 

where lo (z) is the static sag due to gravity and rl(z) the form of the vibrations due to the 
rotor unbalance. 

For rotary vibrations we assume that 

I ‘1 07 I > 20 (L), 6 (5.3) 

Condition (5.2), linearized taking (5.3) into account and neglecting 6 I r1 (4 compared 
with unity, becomes 

EJ%* (L) = c (1 + 620 (L) co.7 cot/ rla (L))z (L) (5.4) 

In this case the equations for the functions x and y are separated, so that the orders 
of the blocks in the determinants of the matrices (4.3) and (4.4) are halved.we must consider 
the homogeneous Eqs.(l.l) of vibrations when the loads due to the gravitational and unbalance 
forces vanish 

EJGz,,*z + p'3tt = 0 (5.5) 
and investigate the stability of the trivial solution of this equation, which satisfies the 
boundary conditions (5.1) and (5.4). 

According to the previous arguments, the solutions at the boundaries of the regions of 
dynamic instability are 

z=A,(I)sin~+81(,)eos~TA3(Z)Sin~+... (5.6) 

z = B, (z) + A, (z) sin cot + El, (z)cos cot + A, (z)sin 2ot + . . (5.7) 

In the sequel we shall consider only curves defined by the expansion (5.6), retaining 
only the first two terms of the series. Substituting this expansion into Eq.(5.5), we obtain 
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and an analogous expression for B,(Q (with ei replaced by bi), where ni and bi are arbitrary 
constants. 

Substituting this result into the boundary conditions (5.1), (5.4), we find that CL~== Q= 
B, = a, = 0. To determine the other arbirary constants, we equate the coefficients of sin(o&%) 
and cos (et/%), to obtain a system of fourth-order linear equations. This system separates 
into two independent second-order subsystems in the variables %, aa and b,, b+, respectively. 
The condition for a non-trivia?. solution to exist is that the determinant of one of these sub- 
systems 

(5.8) 

should vanish (the argument z= pL in the functions SC*? S$ is omitted). 
When 6 =O this implies the usual frequency equation for a rotor in linear bearings. 

Its xoots are obviously the numbers W= 2pi (i== 1,2,...), where pi are the natural frequencies 
of the corresponding linear systems. These are the parametric xesonances in the stability 
diagram in the 0-6 plane. 

Solving Eqs.f5.8) for 8, we mean the equationsof the!bounfiaries of the dynamic instability 
regions: 

1 
i 

putting pL=q, 
we obtain 

The approximate 

where CJ is the non-dimensional frequency of revolution (w= Z@L-a(ES/P)v*), 

form of these curves is shown in Fig.2. The stable regions are hatched. 

Fig.2 

The following conclusions can be drawn. 
As 6 is increased, the unstable zones become wider. 
UnstabLe regions corresponding to different parametric resonances become wider as the 

frequency of revolution increases. 
If the parameter e= r&Vi, is increased (i.e., an increase in the dynamic load or a drop 

in the static load), the ordinate of the point R on the curve 6(o) increases and the unstable 
zone for the region of rotary vibrations becomes narrower. It can be shown that in the region 
of pendular vibrations the pattern of variation in the width of the instability zone due to 
variationof r; is precisely the opposite. 

Larger clearance causes a shift of the pendular resonances pllii toward lower frequencies 
of revoLuticn (this is evident from formulae (4.5)) and a shift of the unstable regions 
corresponding to these resonances. 

The unstable regions for parametric resonance5 0 = ZP~*IJZ and m= &$n (r>: $1 can be 
obtained by retaining the necessary number of terms in Eqs.f5.7) and (5.8) and considering 
the appropriatetype of motion (pendular or rotary vibrations). 
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FLOW OF A PLANE JET OF LIQUID FROM A RESERVOIR WITH 
FLEXIBLE WALLS NEAR A SCREEN* 

V.P. ZHITNIKOV 

The problem of the jet overhang created by a jet emerging through an 
orifice in a flexible barrier is considered. A numerical investigation 
is made of the mutual influence of the shape of the flexible reservoir 
walls and the jet parameters for different ratios of the pressure and 
distance to the screen. 

The problem considered here is connected with calculations of the flow in flexible barriers 
ofvessels on air cushions. Previous studies /l, 2/ have considered detached flow around a 
flexible casing near a screen, i.e., flow typical for the chamber scheme of formation of an air 
cushion. The study of flows in a jet scheme involves considerable computational complexity, 
and in this connection the problem is usually simplified by being split into two: computation 
of the shape of the casing on the assumption that the pressure distribution is a step function 
/3/J and computation-of the jet flow from a nozzle device of given shape, in which context the 
nozzle is usually assumed to have straight walls /4, 5/. It is still not known to what degree 
the actual pressure distribution affects the shape of the casing, or how far the latter affects 
the jet parameters. The combined examination of both these problems in /6/, for the case in 
which the physical picture is symmetric about the vertical axis, shows that this influence, for 
real ratios of the width of the orifice in the casing to its length,is negligible. However, 
the problem when there is no symmetry remains open, in particular for large transverse pressure 
drops. 

1. This appears is devoted to a numerical solution of the problem of a planar jet emerging 
from an orifice in a flexible barrier, in its exact non-linear steady-state formulation, for 
unequal pressures pr, and p. and different casing lengths L, and +, from the edges of the 
orifice A and B to the attachment points A' and B' (Fig.l,a). The casing is assumed to be 
absolutely flexible (zero moment), weightless and inextensible; the liquid is assumed to be 
weightless, inviscid and incompressible. The casing is attached at its ends A' and, B' to the 
vertical walls of the channel, and the ends A and B are assumed to be connected by a thin 
thread that does not obstruct the motion of the flow. The thread thereby keeps the ends of the 
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